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We present a measurement of the top quark mass and of the top-antitop pair production cross
section using pp̄ data collected with the CDF II detector at the Tevatron Collider at the Fermi
National Accelerator Laboratory and corresponding to an integrated luminosity of 2.9 fb−1. We
select events with six or more jets satisfying a number of kinematical requirements imposed by
means of a neural network algorithm. At least one of these jets must originate from a b quark,
as identified by the reconstruction of a secondary vertex inside the jet. The mass measurement
is based on a likelihood fit incorporating reconstructed mass distributions representative of signal
and background, where the absolute jet energy scale (JES) is measured simultaneously with the
top quark mass. The measurement yields a value of 174.8 ± 2.4(stat+JES) +1.2

−1.0(syst) GeV/c2,
where the uncertainty from the absolute jet energy scale is evaluated together with the statistical
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uncertainty. The procedure measures also the amount of signal from which we derive a cross section,
σtt̄ = 7.2 ± 0.5(stat) ± 1.0(syst)± 0.4(lum) pb, for the measured values of top quark mass and JES.

PACS numbers: 14.65.Ha, 13.85.Ni,13.85.Qk

I. INTRODUCTION

Since its early measurements, the large value of the
top quark mass (Mtop) has represented a really strik-
ing property of this particle, giving to the top quark a
special position within the standard model (SM) and
suggesting also possible links to new physics [1]. In
fact, apart from being itself a fundamental parameter
of the SM, Mtop is by far the largest mass among the
ones of the observed fermions, and this makes the top
quark contribution dominant in higher order correc-
tions to many observables. Therefore Mtop plays a
central role in checking the consistency of theoretical
predictions of the SM. The higher order corrections
apply also to the W boson propagator, and therefore
affect the calculated value of the W mass, MW . As
the latter depends logarithmically on the mass of the
Higgs boson, precise measurements of MW and Mtop

allow setting indirect constraints on the value of the
mass of this fundamental, but still unobserved parti-
cle [2]. Moreover, possible contributions due to some
unknown physics might also be constrained. Finally,
the present value of Mtop makes the Yukawa coupling
to the Higgs field of O(1) and this could indicate a
special role of the top quark in the mechanism of elec-
troweak symmetry breaking.

All these reasons make the accurate knowledge of
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Mtop a really important issue, but the same is true
for the measurement of the tt̄ production cross section
(σtt̄), both as a test for physics contributions beyond
the SM and as a test of current next-to-leading order
QCD calculations [3]. Usually, measurements of σtt̄

rely upon event counting and are performed assuming
an a-priori value for Mtop. The technique used here
allows the simultaneous measurement of both these
important and related properties of the top quark.

At the Tevatron Collider at Fermi National Accel-
erator Laboratory, top quarks are produced mostly in
pairs. In the SM the top quark decays into a W boson
and a b quark almost 100% of the time, and the topol-
ogy of the final state resulting from a tt̄ event depends
on the hadronic or leptonic decay of the two final state
W bosons. In this paper, we consider events char-
acterized by a multijet topology (all-hadronic mode)
with no energetic leptons. This tt̄ final state has the
advantage of a large branching ratio (≈ 4/9) and of
having no undetectable final-state particles. The ma-
jor challenge of this channel is the large background
from QCD multijet production, which dominates the
signal by three orders of magnitude after the applica-
tion of a specific online event selection (trigger). To
increase the purity of the candidate sample, require-
ments based on the kinematical and topological char-
acteristics of SM tt̄ events are expressed in terms of
an artificial neural network and applied to the data.
Further improvement is then obtained from the re-
quirement of at least one jet identified as originating
from a b quark using a secondary vertex b-tagging al-
gorithm. Simulations predict that a clear tt̄ signal will
thus become visible over background in the selected
data sample, and the measurement of the top quark
mass and the tt̄ cross section is made possible in spite
of the overwhelming QCD multijet production.

A reconstructed top quark mass is determined by
fitting the kinematics of the six leading jets in the
event to a tt̄ final state. This variable, denoted as
mrec

t , does not strictly represent a measurement of
Mtop, but its distribution obtained by a sample of tt̄
events is sensitive to Mtop itself. The jet energy scale
(JES) is a factor representing the set of corrections
needed to obtain a better estimate of the energy of a
parton starting from a jet reconstructed by clusters in
the calorimeter. The default JES used in simulated
events is obtained by a tuning to the data, but pos-
sible discrepancies between data and simulation lead
to an uncertainty on this value. The strong correla-
tion existing between the mrec

t distribution and the
JES implies therefore a corresponding uncertainty on
Mtop. However, the JES can be calibrated using the
selected samples of tt̄ candidate events, where a second
variable, mrec

W , is reconstructed by the four-momenta
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of the jets assigned to the W bosons. This variable
is related to the well-known value of the W -boson
mass, and the JES can be adjusted in such a way that
both the mrec

t and the mrec
W distributions for simulated

events match the observed data. The inclusion of this
procedure, usually referred to as in-situ calibration,
enables a significant reduction of the systematic un-
certainty associated with the inaccurate knowledge of
the JES, and represents an important improvement of
the work described in this paper with respect to the
previous CDF analysis by a similar method [4].

The mrec
t and mrec

W distributions are reconstructed
in two separate samples of selected data events, de-
fined by the presence of exactly one and two or more
b-tagged jets respectively. The data are then com-
pared to corresponding distributions expected from
background and tt̄ events simulated with various val-
ues of the top quark mass and of the JES to fit for
these parameters. In addition, the fitted signal yields
are used to derive a measurement of the tt̄ production
cross section.

The results reported here are based on data taken
between March 2002 and April 2008, corresponding
to an integrated luminosity of 2.9 fb−1. This mea-
surement complements other recent determinations of
the top quark mass and tt̄ cross section by CDF and
D0 [5, 6] in other final states, and improves the latest
CDF measurements in the same channel [4, 7].

The organization of the paper is as follows: Sec-
tion II contains a brief description of the CDF II detec-
tor. The trigger and the neural-network-based sam-
ple selection are discussed in Section III, along with
the identification of jets initiated by b quarks (b jets).
Sections IV and V present the simulated signal sam-
ples and the data-driven method we use for estimat-
ing the background from multijet data. Section VI de-
scribes how the fundamental variables mrec

t and mrec
W

are reconstructed, while in Section VII we present the
final requirements to define the samples of events used
in the measurement. The parametrization of the de-
pendence of the distributions of reconstructed vari-
ables on the values of the top quark mass and the jet
energy scale are described in Section VIII A. The fit
to the experimental distributions and its calibration
are described in Section VIII B and Section IX respec-
tively. Section X details the study of the systematic
uncertainties on the mass measurement, that is then
reported in Section XI. We describe in Section XII the
measurement of the tt̄ cross section.

II. THE CDF II DETECTOR

The CDF II detector [8] is an azimuthally and
forward-backward symmetric apparatus designed to
study pp̄ collisions at the Tevatron. A cylindrical
coordinate system is used where θ is the polar an-
gle to the proton beam direction at the event vertex,
φ is the azimuthal angle about the beam axis, and

pseudorapidity is defined as η = − ln tan(θ/2). We
define transverse energy as ET = E sin θ and trans-
verse momentum as pT = p sin θ where E is the en-
ergy measured by calorimeters, and p is the magni-
tude of the momentum measured by a tracking sys-
tem. The detector consists of a magnetic spectrome-
ter surrounded by calorimeters and muon chambers.
The charged particle tracking system is immersed in
a 1.4 T solenoidal magnetic field with axis parallel
to the beamline. A set of silicon microstrip detectors
provides charged particle tracking in the radial range
from 1.5 to 28 cm, while a 3.1 m long open-cell drift
chamber, the central outer tracker (COT), covers the
radial range from 40 to 137 cm. In combination the sil-
icon and COT detectors provide excellent tracking up
to about pseudorapidities |η| ≤ 1.1, and with decreas-
ing precision up to |η| ≤ 2.0. Segmented electromag-
netic and hadronic calorimeters surround the tracking
system, and measure the energy deposit of particles
interacting in the calorimeters. The electromagnetic
and hadronic calorimeters are lead-scintillator and
iron-scintillator sampling devices, respectively, cover-
ing the range |η| ≤ 3.6. They are segmented in the
central region (|η| < 1.1) in towers of 15◦ in azimuth
and 0.1 in η, and the forward region (1.1 < |η| < 3.6)
in towers of 7.5◦ for |η| < 2.11 and 15◦ for |η| > 2.11,
while the coverage in |η| increases gradually from 0.1
to 0.6 . The electromagnetic calorimeters [9, 10] are in-
strumented with proportional chambers (at large an-
gles) or scintillating strip detectors (in the forward
regions), which measure the transverse profile of elec-
tromagnetic showers at a depth corresponding to the
expected shower maxima. Drift chambers located out-
side the central hadronic calorimeters and behind a
60 cm iron shield detect muons with |η| ≤ 0.6 [11].
Additional drift chambers and scintillation counters
detect muons in the region 0.6 < |η| < 1.5. Mul-
ticell gas Cherenkov counters [12] with a coverage of
3.7 < |η| < 4.7 measure the average number of inelas-
tic pp̄ collisions and thereby are used to determine the
luminosity.

III. MULTIJET EVENT SELECTION AND

b-TAGGING

The final state of all-hadronic tt̄ events is character-
ized by the presence of at least six jets from the decay
of the two top quarks, where additional jets might
come from initial or final state radiation. Events hav-
ing such a topology are collected using a multijet trig-
ger which relies on calorimeter information. Subse-
quently, jets are identified during event reconstruction
by grouping clusters of energy in the calorimeter us-
ing a fixed-cone algorithm with a radius 0.4 in η-φ
space [13]. After a preliminary selection of multijet
events, a neural-network selection based on relevant
kinematical variables is used to further improve the
purity of the sample.
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A. Multijet Trigger

The CDF trigger system has three levels. The first
two levels consist of special-purpose electronic circuits
and the third one of conventional programmable dig-
ital processors. At level 1, the jet trigger requires a
single tower with transverse energy Etow

T ≥ 10 GeV.
At level 2 we require that the total transverse en-
ergy, summed over all the trigger towers,

∑

Etow
T , be

≥ 175 GeV, and the presence of four or more clus-
ters of calorimeter towers, each cluster with transverse
energy Eclus

T ≥ 15 GeV. Finally, the third trigger
level confirms the level 2 selection using a more ac-
curate determination of the jet energy, requiring four
or more reconstructed jets with ET ≥ 10 GeV. Ap-
proximately 14 million events satisfy the trigger re-
quirements, corresponding to an events signal-over-
background ratio (S/B) of about 1/1200, assuming a
theoretical cross section of 6.7 pb for a top quark mass
of 175 GeV/c2 [3].

B. Preselection and Topology Requirements

Events satisfying the trigger requirements are re-
constructed in terms of their final state observables
(tracks, vertices, charged leptons, and jets). We retain
only those events that are well contained in detector
acceptance, requiring the primary event vertex [14] to
lie inside the luminous region (|z| < 60 cm). We re-
move events having well identified high-pT electrons
or muons as defined in [15].

In order to have jets matching as accurately as pos-
sible to the hard scattering partons, we correct jet
energies for detector response and multiple interac-
tions [16]. First, we consider the η-dependence of de-
tector response and energy loss in the uninstrumented
regions. Then, after accounting for the small extra
energy deposited by multiple collisions in the same
beam-beam bunch crossing, a correction for calorime-
ter non-linearity is applied so that the jet energies
are equal, on average, to the energy of the particles
incident on the jet cone. The total uncertainty on
the estimate of the original parton energy, where all
uncertainties for the individual corrections are added
in quadrature, varies from 8% to 3% with jet trans-
verse energy increasing from 15GeV to 50 GeV, and
remains approximately constant at 3% above 50 GeV.
Jets with |η| ≤ 2 and ET ≥ 15GeV, after all correc-
tions are applied, are selected for further analysis.

As the uncertainty on the missing transverse en-
ergy, 6ET [17], increases proportionally to

√

∑

ET [18],

its significance is defined as
6ET√
P

ET
, where the 6ET is

corrected for any identified muons, while
∑

ET is ob-
tained by summing the ET ’s of all the selected jets.

We then require that
6ET√
P

ET
be < 3 GeV

1
2 to select

events with small 6ET . At this stage, called preselec-

tion, we are left with about 8.2 million events.

As the topology of the candidate events is de-
termined by the jet multiplicity, we define the sig-
nal region by selecting events with a number of jets
6 ≤ Njets ≤ 8 and we also require jet pairs to be sepa-
rated by at least 0.5 units in the η-φ space. The num-
ber of events passing these additional requirements
is 1 671 098, with an expected S/B of approximately
1/430.

C. Neural-Network-based Kinematical Selection

To further improve the purity of the signal sam-
ple, we use a multivariate approach and take advan-
tage of the distinctive features of signal and back-
ground events through a neural network, which takes
into account the correlations between the kinemati-
cal variables which enter as input nodes in the net-
work. The network uses the mlpfit package [19] as
implemented by root [20] through the TMultiLayer-

Perceptron class.

A first set of 11 global variables, summarized in
Table I, have already been proven to be effective [4] in
reducing the QCD background. Studies performed for
this analysis on the jet development in the calorime-
ter have indicated that a good discrimination between
quark-initiated and gluon-initiated jets can be accom-
plished with η-moment (Mη) and φ-moment (Mφ) of
a jet, which are defined as

Mη =

√

√

√

√

[

∑

tow

Etow
T

ET

η2
tow

]

− η2 (1)

and

Mφ =

√

√

√

√

[

∑

tow

Etow
T

ET

φ2
tow

]

− φ2 , (2)

where ET , η and φ are respectively the transverse en-
ergy, the pseudorapidity and the azimuthal angle of
the jet, while Etow

T is the transverse energy deposited
in the calorimeter towers belonging to the jet.

We remove possible biases coming from ET distri-
butions, which might differ in signal and background
events, by deconvoluting the ET dependence through
a rescaling of all moments to a common reference value
of ET = 50GeV. We obtain what we call scaled mo-
ments :

Ms
η = Mη ×

fη
q (50 GeV)

fη
q (ET )

(3)

and

Ms
φ = Mφ ×

fφ
q (50 GeV)

fφ
q (ET )

, (4)
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where fη
q (ET ) and fφ

q (ET ) are the functions that fit
the profiles of Mη vs ET and of Mφ vs ET in quark-
initiated jets from simulated tt̄ events.

These scaled moments are quite different for jets
coming from a quark or a gluon in simulated tt̄ events.
Such a behavior has been verified in data events where
the jet origin is well known. To take advantage of
the large number of jets in a tt̄ event, we consider
the geometric average of the η-moments and of the
φ-moments, see Fig. 1, evaluated using all jets which
are not identified as coming from a heavy quark by
the criteria explained in Sec. III D.

The 13 variables are used as inputs to a neural net-
work with two hidden layers with 20 and 10 hidden
nodes, respectively, and 1 output node. The net-
work is trained on same-size samples of signal and
background events with 6 ≤ Njets ≤ 8 (about half a
million events). In order to model the signal we use
the pythia v6.2 [21] leading-order Monte Carlo gener-
ator with parton showering followed by a simulation of
the CDF II detector. The reference top quark mass
chosen for the training is Mtop = 175GeV/c2. The
background is obtained from the multijet data events
themselves, since the signal fraction is expected to be
very small before applying the neural-network selec-
tion. The value of the output node, Nout, is the quan-
tity we use as discriminator between signal and back-
ground, and is shown in Fig. 2 for the 6 ≤ Njets ≤ 8
sample.

TABLE I: Input variables to the neural network.

Variable Description
∑

ET Scalar sum of selected jets ET
∑

3 ET As above, except the two highest-ET jets

C Centrality

A Aplanarity

Mmin
2j Minimum dijet invariant mass

Mmax
2j Maximum dijet invariant mass

Mmin
3j Minimum trijet invariant mass

Mmax
3j Maximum trijet invariant mass

E?,1
T

ET sin2 θ? for the highest-ET jet

E?,2
T

ET sin2 θ? for the next-to-highest-ET jet

〈E?
T 〉 Geometric mean over the remaining jets

〈Ms
η 〉 Geometric mean over the untagged jets

〈Ms
φ〉 Geometric mean over the untagged jets

D. Tagging b quarks

In order to enrich the tt̄ content in the event
sample, we use a b-tagging algorithm based on sec-
ondary vertex reconstruction as described in detail
in [14, 22]. The algorithm identifies a jet likely to
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FIG. 1: Geometric average of the η scaled moments (〈M s
η 〉,

upper plot) and of the φ scaled moments (〈M s
φ〉, lower

plot) for QCD multijet (solid histogram) and simulated tt̄
(dashed histogram) events with 6 ≤ Njets ≤ 8.
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FIG. 2: Neural network output, Nout, for QCD multi-
jet (solid histogram) and simulated tt̄ (dashed histogram)
events with 6 ≤ Njets ≤ 8. Histograms are normalized to
unity. The neural network implementation that we use in
the TMultiLayerPerceptron produces an output which is
not strictly bound between 0 and 1.

contain a hadron with a b quark by reconstructing
its decay vertex with at least two high-quality tracks
with hits in the silicon vertex detector. A b-tagged
jet (tag, in brief) must have an associated secondary
vertex with a displacement from the primary ver-
tex in the transverse plane larger than 7.5 times the
transverse-displacement resolution. This is evaluated
for each secondary vertex, but its typical value is
about 190µm. The tagging efficiencies for jets coming
from the fragmentation of b or c quarks are corrected
in simulated events according to the efficiency seen in
the data, by a factor 0.95± 0.04, both for b jets and c
jets. These factors are described in detail in [14].
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IV. EVENT SIMULATION

The standard model tt̄ events used to study the
event selection and to check the performance of the
method (Sec. IX) are simulated using pythia v6.2 [21].
Samples generated with input values of the top quark
mass, M in

top, ranging from 160 to 190 GeV/c2 are con-
sidered and, for each sample, the event selection is re-
peated by varying the JES from its default value [16].
The displacement, denoted as ∆JES, is measured rel-
ative to the uncertainty, σJES, on the default value
itself, so that the value of JES applied to simulated
events is increased by ∆JES · σJES with respect to
the default. To test the method, input values ∆JESin

ranging from −3 to +3 are considered.
Different generators and different values for the

model parameters are used to estimate the systematic
uncertainties, as described in Sec. X.

V. BACKGROUND ESTIMATE

The background for the tt̄ multijet final state comes
mainly from QCD production of heavy-flavor quark
pairs (bb̄ and cc̄) and from false tags of light-flavor
quark jets. Other standard model processes such as
W/Z+jets have a smaller production cross section and
small acceptance due to the selection requirements.

Given the large theoretical uncertainties on the
QCD multijet production cross section, a more accu-
rate background estimate is obtained from the data,
rather than from Monte Carlo simulations. A tag
rate per jet, defined as the probability of tagging a
jet whose tracks are reconstructed in the vertex de-
tector (fiducial jet), is then evaluated in a sample of
events with exactly four jets passing the preselection
and therefore still dominated by the background (S/B
≈ 1/5000). The rate is parametrized in terms of vari-
ables sensitive to both the tagging efficiency for heavy-
flavored objects and the probability of false tags : the
jet ET , the number of tracks reconstructed in the sili-
con vertex detector and associated with the jet, N jet

trk,
and the number of primary vertices reconstructed in
the event, Nvert [4]. The average value of the rate is
about 3.7%. The tag rate estimates the probability
that a jet in the fiducial acceptance of the analysis
(fiducial jet) is tagged. This rate can be applied to
fiducial jets in events selected by kinematic require-
ments to evaluate the inclusive number of tagged jets
originating from background events. This technique
was used in [4]. However, direct exploitation of the tag
rate to predict the number of background events with
a given number of tags would give incorrect numbers.
This happens because, by construction, this rate does
not consider that in QCD background heavy-flavor
quarks come in pairs and have therefore an enhanced
double-tagging probability, so that the probability to
tag a pair of jets in the same event is larger than the
simple product of the tag probabilities of individual

jets.

To account for this we introduce correction factors
to obtain a better estimate for the number of 1-tag
and ≥ 2-tag events. These factors are derived in a
control sample dominated by the background (events
with six, seven or eight jets and Nout ≤ 0.25, with
S/B≈ 1/1300 for 1-tag and S/B≈ 1/400 for ≥ 2-tags)
as the ratio between the observed number of events
with n tags (with n = 1, 2, 3) and the average expec-
tation obtained by using the tag rate to evaluate the
probability for each event to have the same number,
n, of tagged jets. These factors represent therefore av-
erage corrections to the probability for a possible tag

configuration, that is for the assumption that among
the fiducial jets in an event of the sample selected be-
fore the b-tagging requirements (pretag sample) only a
given subset is actually tagged when the algorithm is
applied. Their average values are 0.94, 1.48, and 2.46
for events with 1, 2, and 3 tagged jets respectively.

The accuracy of our modeling of the background
processes is verified in control samples, i.e. on events
with higher values of Nout and therefore with a larger
fraction of signal events and with possible different
kinematics and background composition. As the back-
ground prediction is performed using the data in the
pretag sample, also the presence of tt̄ events must be
taken into account. Therefore a correction is applied
to derive a better evaluation, n(b, exp), of the back-
ground normalization from the raw estimate, n(b, raw),
directly obtained by the corrected tag rate matrix.
This correction must subtract the contribution, ntr

tt̄
,

coming from applying the matrix to signal events and
included in n(b, raw). Denoting by Nobs the number of
events observed in the data sample, by ntt̄ the number
of signal events in this sample and assuming that the
excess of events with respect to the expected back-
ground is totally due to the signal, the correction can
be written as :

n(b, exp) = n(b, raw) − ntr
tt̄

= n(b, raw) −
ntr

tt̄

ntt̄

· ntt̄

= n(b, raw) −
ntr

tt̄

ntt̄

· (Nobs − n(b, exp)) , (5)

which, with Rtt̄ ≡ ntr
tt̄

/ntt̄, gives

n(b, exp) =
n(b, raw) − Rtt̄ · Nobs

1 − Rtt̄

. (6)

Rtt̄ can be inferred from simulated events. Further
possible discrepancies between the observed and ex-
pected number of events are considered as due to the
modeling of the background and accounted for as a
systematic uncertainty.
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VI. MASS RECONSTRUCTION

The simultaneous measurement of the top quark
mass and the JES is based on the reconstruction, event
by event, of both the top quark and the W masses
through a constrained fitting technique. The shapes of
the distributions obtained by this procedure are sen-
sitive to the values of both Mtop and JES. Therefore,
for simulated events, they are built using samples cor-
responding to the different input values of Mtop and
∆JES listed in Sec. IV.

Moreover, given the different resolution in the re-
constructed top quark mass and the W boson mass,
and also the different S/B which can be achieved by
requiring events with exactly one or ≥ 2-tags, two sets
of distributions are separately derived in these sam-
ples.

A. Reconstructed top quark mass

For each event we determine a reconstructed
top quark mass, mrec

t , from the four-momenta of
selected jets. Sixteen equations can be consid-
ered to connect the four-momenta of the two top
quarks and their decay products according to the
tt̄ → bb̄W+W− → bb̄ q1q̄2 q3q̄4 hypothesis :

pµ
t = pµ

W+ + pµ
b , (7)

pµ

t̄
= pµ

W−
+ pµ

b̄
, (8)

pµ

W+ = pµ
q1

+ pµ
q̄2

, (9)

pµ

W−
= pµ

q3
+ pµ

q̄4
, (10)

with µ = 0, 1, 2, 3. There are 13 unknown quanti-
ties, i.e., the unknown top quark mass and the three-
momenta of the top quarks and of the W bosons, so
the kinematics of the events are overconstrained.

The fit is performed using only the six highest-ET

jets (leading jets) of the event and considering their
possible assignments to quarks of a tt̄ final state. The
total number of different permutations giving two dou-
blets of jets corresponding to the W bosons and two
triplets of jets corresponding to the top quarks is 90.
Since we require the presence of b-tags, assigning the
tagged jets only to b quarks reduces this number to
30 for 1-tag events and 6 in case of two or more b
tags [23].

For each permutation the kinematics of the event is
reconstructed minimizing the following χ2 function :

χ2 =

(

m
(1)
jj − MW

)2

Γ2
W

+

(

m
(2)
jj − MW

)2

Γ2
W

+

(

m
(1)
jjb − mrec

t

)2

Γ2
t

+

(

m
(2)
jjb − mrec

t

)2

Γ2
t

+

6
∑

i=1

(

pfit
T,i − pmeas

T,i

)2

σ2
i

. (11)

The minimization procedure is performed with re-
spect to 7 parameters, i.e., the reconstructed top
quark mass, mrec

t , and the 6 jets transverse momenta,
pfit

T,i, which are constrained to the measured value,
pmeas

T,i , within their known resolution, σi. The invari-
ant masses of the jet doublets assigned to light-flavor

quarks coming from a W , m
(1,2)
jj , and of the trijet

systems including one doublet and one of the jets as-

signed to b quarks, m
(1,2)
jjb , are evaluated by the trial

momenta of jets at each step of the minimization. On
the contrary, the measured mass, MW , and the natu-
ral width, ΓW , of the W boson as well as the assumed
natural width of the top quark, Γt, are kept constant
to 80.4 GeV/c2, 2.1 GeV/c2 and 1.5GeV/c2 respec-
tively [24, 25].

The permutation of jets which gives the lowest χ2

value is selected, and the corresponding fitted value of
mrec

t enters an invariant mass distribution (template)
which will be used for the Mtop measurement.

B. Reconstructed W mass

Reconstructing the mass of W bosons by using dijet
systems represents a possibility to obtain a variable in
principle insensitive to Mtop which allows, therefore,
an independent determination of JES.

To build the mrec
W distributions we use the same

procedure and χ2 expression considered for mrec
t , but

now also the W boson mass is left as a free parameter
in the fit (i.e. MW becomes mrec

W ). Again, for each
event, the value of mrec

W corresponding to the permu-
tation of the jet-to-parton assignments with the lowest
χ2 enters the distribution.

Using different fits in the reconstruction of mrec
t

and mrec
W can lead to selecting different assignments

of jets to partons for the two variables in the same
event. This is not a problem as the same procedure is
followed both on data and simulated events. Recon-
structing the top quark mass using a constant value of
MW , as decribed in Sec. VI A, improves the resolution
of the distributions and therefore the determination of
the true value of Mtop. The correlations between the
values of mrec

t and mrec
W in the same event are taken

into account in the calibration of the likelihood fit used
for the measurement (Sec. VIII B).

C. Background templates

In order to reconstruct data-driven background
templates we apply the kinematical fitter to the sam-
ple of events passing the neural network selection, but
before the requirement of tagged b jets.

The same procedures described in Sec. VI A and
Sec. VI B are repeated on these events assigning fidu-
cial jets to b quarks and then looping over all possi-
ble assignments of other jets to the remaining quarks,
performing the fit for each permutation and selecting
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the reconstructed mrec
t and mrec

W values correspond-
ing to the best χ2. These values then enter the tem-
plates weighted by the corrected probability of the as-
sumed tag configuration, see Sec. V. As for the nor-
malization, also the background distributions need to
be corrected for the presence of signal in the pretag
sample by subtracting the contribution from tt̄ events.
The shape of this contribution is obtained from simu-
lated samples and depends on the assumed Mtop and
JES, while the normalization is given by the difference
n(b, raw) − n(b, exp), as described in Sec. V.

In order to check how well our modeling describes
the background, we consider events in control regions
defined by the Nout value, in ranges where the signal
presence after tagging is still very low. In these regions
the templates, i.e. the main elements of our measure-
ment, are reconstructed by the procedure described
in the previous sections both for the signal and the
background, as well as other important distributions
like Nout and the χ2 of the fit used to build the mrec

t

templates. These distributions are then compared to
observed data, taking into account the contribution
from signal events. The agreement is generally good
in all the control regions, and this confirms the relia-
bility of the background model.

Figures 3 and 4 show, as examples, distributions
of mrec

t and mrec
W in one of the control regions for

1-tag and ≥ 2-tag events, where the sum of signal
and background is compared to the same distribu-
tions reconstructed in the data. In these plots the
integral of the signal distributions corresponding to
Mtop = 175GeV/c2 and the default value ∆JES=0
have been normalized to the difference between the
observed data and the corrected expected background.

VII. EVENT SAMPLES

In order to obtain the best performance from
our method, we performed sets of pseudoexperiments

(PEs) to find out which requirements on the values of
Nout and of the χ2 used to obtain the mrec

t values min-
imize the statistical uncertainty on the top quark mass
measurement. The procedure is similar to the one out-
lined in Sec. IX, with a binned version of the same like-
lihood. It is applied separately to 1-tag and ≥ 2-tag
samples and considers many different combinations of
possible requirements. The smallest values for the
uncertainty are obtained using

(

Nout ≥ 0.90, χ2 ≤ 6
)

in the 1-tag sample and
(

Nout ≥ 0.88, χ2 ≤ 5
)

in the
≥ 2-tag sample so that we add these requirements
to the prerequisites described in Sec. III B. The fi-
nal definition of the samples used in our analysis is
summarized in Table II.
After these selections, 3452 and 441 events are ob-
served for the 1-tag and ≥ 2-tag samples respec-
tively. We can evaluate the average number of back-
ground events expected in the selected samples and
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FIG. 3: Distributions of the reconstructed top quark
mass, mrec

t , for 1-tag events, upper plot, and ≥ 2-tag
events, lower plot, are shown in a control region defined
by 0.75 ≤ Nout < 0.85. Along with the data are plotted
the corrected expected background and the signal con-
tribution for Mtop = 175 GeV/c2 and the default value
∆JES = 0, normalized to the difference between the data
and the background. The value of the purely statistical χ2

probability is reported on each plot.

TABLE II: Final definition and requirements for selected
event samples.

Event Sample b-tags Nout mrec
t fit χ2

1-tag ≡ 1 ≥ 0.90 ≤ 6

≥ 2-tags 2 or 3 ≥ 0.88 ≤ 5
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FIG. 4: Distributions of the reconstructed W mass, mrec
W ,

for 1-tag events, upper plot, and ≥ 2-tag events, lower
plot, are shown in a control region defined by 0.75 ≤
Nout < 0.85. Along with the data are plotted the cor-
rected expected background and the signal contribution
for Mtop = 175 GeV/c2 and the default value ∆JES = 0,
normalized to the difference between the data and the
background. The value of the purely statistical χ2 proba-
bility is reported on each plot.

their uncertainties, as described in Sec. V. The sys-
tematic uncertainties on the background normaliza-
tions are estimated by assuming that the discrepancy
between the observed number of events in the data
and the sum of the expected contributions from signal
and background (where, in this case, the theoretical
cross section value of 6.7pb is considered for tt̄ events
production) is due to a bad evaluation of the back-
ground. This is done separately for 1-tag and ≥ 2-tag

samples, and the resulting relative uncertainties on
the expected number of events are σ(n1 tag

(b, exp)) = 2.9%

and σ(n≥2 tags

(b, exp) ) = 14.6% respectively. The efficien-

cies of the full selection on tt̄ events corresponding
to Mtop = 175GeV/c2 and ∆JES = 0 are 3.6% and
1.0% for 1-tag and ≥ 2-tag events respectively. These
values are used to evaluate the expected signal con-
tributions of Table III, where σtt̄ = 6.7pb is assumed.
In the same table, also the observed number of events
and the expected background in each sample are sum-
marized.

TABLE III: Number of events observed in the selected
data samples and corresponding expected numbers of
background and tt̄ events. The signal contribution is eval-
uated for Mtop = 175 GeV/c2, ∆JES = 0 and σtt̄ = 6.7 pb.

Event Sample Observed Background tt̄

1-tag 3452 2785± 83 693

≥ 2-tags 441 201± 29 193

VIII. LIKELIHOOD FIT

The technique described in Sec. VI allows obtaining
sets of observed mrec

t and mrec
W values reconstructed

in the data samples with 1 or ≥ 2 tags as well as
to build signal and background distributions for the
same variables. As explained in Sec.VII, only events
with a χ2 for the reconstruction of mrec

t smaller than
a threshold value beside the fulfilment of the kinemat-
ical requirements are considered. In order to measure
the top quark mass simultaneously with the JES, a fit
is performed where an unbinned likelihood function
is maximized to find the values of Mtop, ∆JES, and
the number of signal (ns) and background (nb) events
for each tagging category which give the probability
density functions (p.d.f.’s) best describing the data.

A. Probability density functions

The signal templates are fitted by normalized com-
binations of Gamma and Gaussian p.d.f.’s, and the
dependence of the shape on input Mtop and ∆JES is
included writing the parameters of the p.d.f.’s as lin-
ear functions of these variables. Figures 5 and 6 show
examples of the fitted p.d.f.’ s superimposed on the
mrec

t and mrec
W signal templates respectively for differ-

ent Mtop and ∆JES values.
The shape of distributions built for the background

cannot depend on the characteristics of signal events,
and in particular on the value of top quark mass.
Moreover, as they are obtained from data, the shapes
correspond to the reference value of the jet energy
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FIG. 5: Distributions and fitted probability density func-
tions for the signal mrec

t in ≥ 2-tag events for a constant
∆JES value (∆JES = 0), varying the input top quark mass
(upper plot) and for a constant Mtop value (175 GeV/c2),
varying the input jet energy scale (lower plot).

scale. For these reasons no dependence on Mtop and
JES is considered in the p.d.f.’s used to fit the back-
ground templates. Actually, a very weak dependence
is introduced through the corrections to the shape of
the background distributions, performed to take into
account the presence of signal events in the pretag
sample, as described in Sec.VI C. These effects are
taken into account as a systematic uncertainty. Ex-
amples of background mrec

t and mrec
W distributions and

the corresponding fitted p.d.f.’s are shown in Fig. 7
for ≥ 2-tag events. Discrepancies between the fitted
p.d.f.’s and the corresponding distributions are consid-
ered in the calibration procedure, presented in Sec. IX.
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FIG. 6: Distributions and fitted probability density func-
tions for the signal mrec

W in ≥ 2-tag events for a constant
∆JES value (∆JES = 0), varying the input top quark
mass (upper plot), where independence of mrec

W on Mtop

is apparent, and for a constant Mtop value (175 GeV/c2),
varying the input jet energy scale (lower plot).

B. The Likelihood Function

The likelihood function, L, is divided into three
main parts and can be written as :

L = L1 tag ×L≥2 tags ×L∆JESconstr . (12)

The L1 and L≥2 tags terms further consist of other
factors :

L1,≥2 tags = LMtop ×LJES ×LPoiss ×L
N

bkg
constr

, (13)
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FIG. 7: Background mrec
t (upper plot) and mrec

W (lower
plot) distributions with the corresponding fitted p.d.f.’s for
≥ 2-tag events. The bands denote the 1σ uncertainty on
the bin contents of the templates, including both statistical
and systematic contributions.

where the four terms on the right side assume respec-
tively the following form (the superscripts referring to
the tag sample are omitted and fs ≡ ns/(ns + nb),
fb ≡ 1 − fs) :

Nobs
Y

i=1

fs · P
mrec

t
sig (mt, i |Mtop, ∆JES) + fb · P

mrec
t

bkg (mt, i) , (14)

Nobs
Y

i=1

fs · P
mrec

W
sig (mW, i |Mtop, ∆JES) + fb · P

mrec
W

bkg (mW, i) , (15)

e−(ns+nb) · (ns + nb)
Nobs

Nobs!
, (16)

e
−

(nb−n(b, exp))
2

2σ2
n(b, exp) . (17)

In expression (14) the probability to observe the set
mt, i, (i = 1, ..., Nobs) of mrec

t values reconstructed
in the data is calculated by using the total probabil-
ity density function resulting from the combination
of the parametrized signal and background p.d.f.’s

(Sec. VIII A), P
mrec

t

sig and P
mrec

t

bkg respectively, as a func-

tion of the free parameters of the fit. In term (15) the
same is done for the set of the observed W masses,
mW, i, (i = 1, ..., Nobs), and the mrec

W p.d.f. . The
term (16), LPoiss, gives the probability to observe the
number of events selected in the data, given the aver-
age number of signal (ns) and background (nb) events
expected in the sample, as assumed at each step of
the likelihood fit. In the last term, (17), the param-
eter nb is constrained by a Gaussian to the a priori

background estimate given in Sec. VII, i.e. n(b, exp) =
2785 ± 83 for 1-tag events and n(b, exp) = 201 ± 29
for ≥ 2-tag events. Finally, the last term in expres-
sion (12), L∆JESconstr , is a Gaussian term constraining
∆JES to its a priori value :

e−
(∆JES−∆JESconstr)

2

2 . (18)

When the measurement is performed on data, the JES
can be constrained to the value independently mea-
sured in [16]. Given the meaning of ∆JES, described
in Sec. IV, this means that, in this case, ∆JESconstr =
0.

IX. VERIFICATION AND CALIBRATION OF

THE METHOD

We want to investigate the possible presence of bi-
ases in the top quark mass and jet energy scale mea-
surements introduced by our method, as well as to
have an estimate of its statistical power before per-
forming the measurement on the actual data sample.
To do so, we run realistic pseudoexperiments (PEs)
where pseudodata are extracted from simulated sig-
nal and data-driven background distributions. A set
of 3000 PEs is performed for each simulated value of
the top quark mass and of the displacement in the jet
energy scale (Sec. IV). Using the notation introduced
in Sec. IV, we refer to these input values as M in

top and

∆JESin and they represent the true values we want
to measure. In each PE the actual numbers of signal
(N(s, obs)) and background (N(b, obs)) events in each
tagging category are generated with Poisson distribu-
tions with mean n(s, exp) = Nobs−n(b, exp) and n(b, exp)

respectively, where Nobs are the observed number of
events in the data samples (Nobs = 3452 for 1-tag and
Nobs = 441 for ≥ 2-tag events). A set of N(s, obs) and
N(b, obs) mass values are then drawn from mrec

t and
mrec

W distributions of signal and background and used
as inputs to the likelihood fit (Sec. VIII) that returns
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simultaneous measurements of Mtop and ∆JES, de-

noted as Mout
top and ∆JESout. The average of these

measurements over the whole set of 3000 PEs repre-
sents the best estimate of the input values obtained
by the fitting procedure and therefore can be used to
study its behavior. We fit the dependence of these av-
erages with respect to the input values over the whole
range of simulated M in

top and ∆JESin as

〈Mout
top 〉 = (A00 + A01 · ∆JESin)

+ (A10 + A11 · ∆JESin) · (M in
top − 175) , (19)

〈∆JESout〉 =
h

B00 + B01 · (M in
top − 175)

i

+
h

B10 + B11 · (M in
top − 175)

i

· ∆JESin
. (20)

These relations can be inverted to obtain calibration
functions to be applied to further measurements and
therefore, on average, a more reliable estimate of the
true values (2D calibration). The calibrated values re-
sulting from a measurement giving M out

top and ∆JESout

are denoted as M corr
top and ∆JEScorr, while the respec-

tive uncertainties, obtained by propagating through
the calibration the uncertainties from the likelihood
fit, are δM corr

top and δ∆JEScorr. A second set of PEs is
then performed to test the goodness of the procedure.
Table IV shows the coefficients Aij and Bij obtained
both from calibrated and uncalibrated PEs compared
to their ideal values in absence of any bias.

TABLE IV: Coefficients of expressions (19) and (20) as
obtained from calibrated and uncalibrated pseudoexperi-
ments. The ideal values in absence of any bias are also
shown.

Uncalibrated Calibrated Ideal
PEs PEs value

A00 175.47± 0.01 174.99± 0.01 175

A01 −0.24± 0.01 0.00± 0.01 0

A10 0.985± 0.002 1.000± 0.002 1

A11 0.009± 0.001 0.000± 0.001 0

B00 −0.026± 0.003 0.002± 0.003 0

B01 0.0009± 0.0004 −0.0001± 0.0004 0

B10 1.052± 0.002 0.999± 0.002 1

B11 −0.0016± 0.0002 0.0001± 0.0002 0

In Fig. 8 examples of linearity plots are shown for
calibrated PEs. These plots, together with the num-
bers in Table IV, show how the calibration removes
any average bias. To check that also the uncertainties
δM corr

top and δ∆JEScorr are unbiased, we consider the
width of M corr

top and ∆JEScorr pull distributions, that is
the distributions of deviations of the calibrated values
from the true inputs in the PEs, divided by the un-
certainties themselves. We find that the uncertainties
are both underestimated, and multiplicative correc-
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FIG. 8: Examples of response linearity plots (〈M corr
top 〉 vs

M in
top, upper plot, and 〈∆JEScorr〉 vs ∆JESin, lower plot)

after the 2D calibration. The results of fits by a straight
line are shown as solid lines, while the dashed straight lines
represent the ideal behavior.

tion factors equal to 1.084 for δM corr
top and to 1.115 for

δ∆JEScorr are needed. After these corrections the av-
erage expected uncertainty on the measured top quark
mass and jet energy scale displacement for true Mtop

and ∆JES around 175GeV/c2 and 0, are :

δM corr
top (stat + JES) = 2.0 GeV/c2 , (21)

δ∆JEScorr (stat + Mtop) = 0.45 . (22)
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X. SYSTEMATIC UNCERTAINTIES

The possible systematic uncertainties on the top
quark mass and the jet energy scale measurements
have been studied and are summarized in this sec-
tion. These arise mostly from the measurement tech-
nique itself, from uncertainties in the simulation of
the tt̄ events, from mismodeling of the detector re-
sponse, and from uncertainty on the shapes of signal
and background templates used to derive the p.d.f.’s
and to calibrate the measurement. The uncertainties
are usually evaluated by performing PEs extracting
pseudodata from templates built using signal samples
where the possible systematic effects have been con-
sidered and included. Corrections to the shape of the
raw background templates are performed as described
in Sec. VI C to obtain the corrected background tem-
plates corresponding to the effect one wants to study.
On the contrary, nothing is changed in the elements of
the likelihood fit, because it is the default procedure
that we want to apply to real data and that, there-
fore, we have to test in case of possible mismodeling
of the data themeselves. The results from these PEs
are then compared to the ones obtained by using de-
fault templates, and the shifts in the average M corr

top

and ∆JEScorr values are taken as the estimate of the
systematic uncertainties. In some cases the statisti-
cal uncertainties on the shifts may be larger than the
shifts themselves and therefore we use conservatively
the former as systematic uncertainty. In the follow-
ing, after the description of each effect, we also quote
in parentheses the values of the corresponding uncer-
tainties for the top quark mass and the jet energy
scale respectively. These values are then summarized
in TableV.

The 2D calibration removes the average biases, es-
pecially related to the parametrization of the tem-
plates using smooth probability density functions.
Residual biases usually exist at single (M in

top, ∆JESin)
points, and have to be taken into account. We there-
fore consider the shift of the mean of the pull distribu-
tions with respect to 0 at each (M in

top, ∆JESin) point
to evaluate this residual bias systematic uncertainty,
which, given the definition of pull in section IX, is
defined as a function of the uncertainty on the cal-
ibrated measurements. To obtain the proper cover-
age of both positive and negative biases we evalu-
ate them separately, so that asymmetric uncertainties
are finally considered. They are generally given by
(+0.20
−0.37) · δM corr

top for M corr
top and (+0.56

−0.43) · δ∆JEScorr for
∆JEScorr. Specifying the values obtained in the mea-
surement on the data, described in Sec. XI, we obtain
(+0.8
−0.4 GeV/c2 on M corr

top , +0.18
−0.24 on ∆JEScorr).

The uncertainties on the parameters of the 2D cali-
bration give a small uncertainty on the corrected val-
ues M corr

top and ∆JEScorr which can be evaluated by
the calibration functions and the values of Mtop and
∆JES fitted in the data. (< 0.1GeV/c2, < 0.01).

Many sources of systematic effects arise from un-

certainties in modeling of the hard interaction in sim-
ulated events. pythia and herwig [26] Monte Carlo
generators differ in their hadronization schemes and
in their description of the underlying event and mul-
tiple interactions. The default signal samples have
been generated with pythia and therefore an uncer-
tainty is obtained by using a sample generated using
herwig. (0.3GeV/c2, 0.25).

Jets coming from possible emission of hard gluons
might fall among the six leading jets and populate
the tails in the top quark invariant mass distribution.
The amount of radiation from partons in the initial
(ISR) or final (FSR) state is set by parameters of the
pythia generator used to simulate signal events. To
study these effects, templates are built using samples
where the values of the parameters have been changed
with respect to the default, to increase or to decrease
the amount of radiation [22]. (0.1GeV/c2, 0.06).

Since the default jet energy corrections are derived
from data samples deficient in heavy flavors [16], an
additional uncertainty comes from considering the dif-
ferent properties of b quarks. We account for the
uncertainties on the b quark semileptonic branching
ratios, fragmentation modeling, and calorimeter re-
sponse to heavy flavor hadrons. (0.2GeV/c2, 0.04).

The different efficiency of the b-tagging algorithm
on data and simulated events is usually considered by
introducing a constant scale factor (b-tag SF). The
overall uncertainty on this parameter affects the cross
section measurement described in Sec. XII. However,
such scale factor does not need to be considered re-
garding the top quark mass measurement, because it
could slightly change only the population of the signal
templates, but not their shape. On the other hand,
variations of the latter could be caused by the possible
dependence of the b-tag SF on the transverse energy
of jets, which is then considered as a systematic effect.
(0.1GeV/c2, 0.01).

The uncertainty on the top quark mass coming from
the likelihood fit includes the uncertainty due to the
jet energy scale. However, as described in Sec. III B,
this uncertainty is the result of many independent ef-
fects with different behavior with respect to proper-
ties of jets like ET and η [16], and therefore represents
a leading order correction. Second order effects can
arise from uncertainties on the single corrections ap-
plied to the jet energies. To evaluate these possible ef-
fects, we build signal templates by varying separately
by ±1 σ the single corrections and, for each one of
these variations, PEs were performed by using these
templates and not applying the constraint L∆JESconstr

in the likelihood fit, as this term is related to effects
of the full correction. The resulting uncertainties have
been added in quadrature to obtain a residual JES un-
certainty on the top quark mass. (0.5GeV/c2).

The choice of parton distribution functions (PDF)
in the proton used in Monte Carlo generators can af-
fect the kinematics of simulated tt̄ events and thus the
top quark mass measurement. We considered four
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sources of uncertainties : the difference arising from
the use of the default CTEQ5L [27] PDF and one
calculated from the MRST group, MRST72 [28]; the
uncertainty depending on the value of αs, evaluated
by the difference between the use of MRST72 and
MRST75 PDF’s; the uncertainty depending on the
differences between the leading order (LO) and next-
to-leading order (NLO) calculations of PDF, evalu-
ated by the difference between using default CTEQ5L
(LO) and CTEQ6M (NLO) PDF; the uncertainties on
PDF deriving from experimental data uncertainties.
(+0.3
−0.2 GeV/c2, +0.05

−0.04).

The probability to have multiple pp̄ interactions
during the same bunch-crossing is a function of the
instantaneous luminosity. This is reflected in the in-
creasing number of primary vertices reconstructed in
the events at higher luminosities. We account for the
fact that the simulated samples for the signal pro-
cess do not model the actual luminosity profile of the
data by considering the signal distributions for events
with 1, 2, 3 and ≥ 4 reconstructed vertices separately.
These distributions are then used to obtain the tem-
plates by weighted averages, where the weights are
evaluated as the fractions of events with 1, 2, 3 and
≥ 4 vertices observed in the data. Moreover, a possi-
ble mismodeling of the dependence of the jet energy
response as a function of the reconstructed number
of primary vertices in simulated events is considered.
(0.2GeV/c2, 0.01).

Uncertainties from modeling of color reconnection
effects [29] are estimated by comparing the results
of two sets of PEs performed drawing pseudodata
from templates built using simulated samples gener-
ated by pythia with different tunes of parameters,
corresponding to different models of color reconnec-
tion. (0.4GeV/c2, 0.08).

The shapes of the signal and background distribu-
tions are affected by uncertainties due to the limited
statistics of the simulated events and data samples
used to build them. These uncertainties affect the
results of a measurement which is performed max-
imizing an unbinned likelihood where parametrized
p.d.f.’ s, fitted to default templates, are evaluated. We
address this effect obtaining 100 sets of templates by
statistical fluctuations of default ones and performing
pseudoexperiments drawing data from each of these
sets separately. From each set we obtain an aver-
age value for M corr

top and ∆JEScorr, and the spread of
these values is taken as the systematic uncertainty.
(0.3GeV/c2, 0.07).

Beside the purely statistical effects, quoted above,
the shape of the background templates also has un-
certainties due to the corrections for the presence of
signal events in the pretag sample, Sec. VI C, and to
the systematic uncertainty on the background normal-
ization, Sec. VII. We address this source of system-
atic uncertainty by the same technique used for the
statistical contributions, that is by obtaining a set of
100 background templates where the content of each

bin is separately fluctuated by Gaussian distributions
centered on the default bin content and with a width
equal to its systematic uncertainty, and taking the
spread of results from PEs as the systematic uncer-
tainty. (0.1GeV/c2, 0.02).

Table V shows a summary of all the systematic un-
certainties and their sum in quadrature, which gives
a total systematic uncertainty of +1.2

−1.0 GeV/c2 for the

Mtop measurement and +0.34
−0.37 for the ∆JES.

TABLE V: Systematic uncertainties and their sizes for the
top-quark mass and the jet energy scale measurements.
The total uncertainty is obtained by the sum in quadrature
of single contributions.

Source δMsyst
top δ∆JESsyst

(GeV/c2)

Residual bias +0.8
−0.4

+0.18
−0.24

2D calibration < 0.1 < 0.01

Generator 0.3 0.25

ISR/FSR 0.1 0.06

b-jet energy scale 0.2 0.04

SF ET dependence 0.1 0.01

Residual JES 0.5 −−
PDF +0.3

−0.2
+0.05
−0.04

Multiple Hadron Interactions 0.2 0.01

Color Reconnection 0.4 0.08

Statistics of Templates 0.3 0.07

Background Shape 0.1 0.02

Total +1.2
−1.0

+0.34
−0.37

XI. TOP MASS AND JES MEASUREMENTS

After the kinematical selection with Nout ≥ 0.90
(≥ 0.88) and χ2 ≤ 6 (≤ 5), we are left with 3452
(441) events with one (≥ 2) tag(s). The background
amounts to 2785 ± 83 (201 ± 29) for events with one
(≥ 2) tag(s).

For these events a top quark mass has been
reconstructed using the likelihood fit described in
Sec. VIII B and applied to the data sample. Once
the calibration procedure and corrections are applied,
as described in Sec. IX, the best estimate of the top
quark mass is

Mtop = 174.8± 2.4 (stat + JES) GeV/c2 , (23)

while the value obtained for the jet energy scale dis-
placement is

∆JES = −0.30± 0.47 (stat + Mtop) . (24)
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We can also evaluate separately the purely statistical
contributions obtaining

Mtop = 174.8± 1.7 (stat) ± 1.6 (JES) GeV/c2 , (25)

and

∆JES = −0.30± 0.35 (stat) ± 0.32 (Mtop) . (26)

The plot in Fig. 9 shows the measured values to-
gether with the log-likelihood contours corresponding
to 1, 2, and 3 σ uncertainty on the value of the top
quark mass [24]. The slope of the major axis of the
contours denotes that the measurements of Mtop and
∆JES have a negative correlation, and the value of the
correlation coefficient obtained from the likelihood fit
is −0.68.
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FIG. 9: Negative log-likelihood contours for the likelihood
fit performed for the Mtop and ∆JES measurements. The
minimum is also shown and corresponds to the values mea-
sured in the data. The contours are drawn at values of 0.5,
2.0, and 4.5 of the increase of the log-likelihood from the
minimum value. These curves correspond to 1, 2, and 3 σ
uncertainty on the measurement of the top quark mass.

The plots in Fig. 10 show the mrec
t distributions

for the data compared to the expected background
and the signal for a top quark mass of 175.0GeV/c2

and a jet energy scale displacement of −0.3, that is
the values of simulated Mtop and ∆JES as close as
possible to the measurements in the data. The signal
and background contributions are normalized to the
respective number of events as fitted in the data.

The plots in Fig. 11 compare the measured statis-
tical uncertainty, just after the 2D calibration, with
the expected distribution from default pseudoexper-
iments using as inputs Mtop = 175.0GeV/c2 and
∆JES = −0.3. We find that the probability of achiev-
ing a better sensitivity is 91.6% for Mtop and 81.2%
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FIG. 10: Distributions of mrec
t as obtained in the data

(black points) for 1-tag (upper plot) and ≥ 2-tag events
(lower plot) are compared to the distributions from signal
and background corresponding to Mtop = 175 GeV/c2 and
∆JES = −0.3. The expected histograms are normalized
to the measured values for the average number of signal
and background events. The values of the purely statis-
tical χ2 and of its probability are reported on each plot,
showing the overall agreement between the data and the
fitted distributions.

for ∆JES.

Summarizing, the measured values for the top quark
mass and the jet energy scale are

Mtop = 174.8 ± 2.4 (stat + JES) +1.2
−1.0 (syst) GeV/c2 , (27)

∆JES = −0.30 ± 0.47 (stat + Mtop)
+0.34
−0.37 (syst) , (28)



18

]2(stat + JES) [GeV/ctopMδ
1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

]2
F

ra
ct

io
n

 o
f 

P
E

s/
[0

.1
0 

G
eV

/c

0

0.05

0.1

0.15

0.2

0.25

0.3

]2(stat + JES) [GeV/ctopMδ
1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

]2
F

ra
ct

io
n

 o
f 

P
E

s/
[0

.1
0 

G
eV

/c

0

0.05

0.1

0.15

0.2

0.25

0.3

 Expected

 Measured

JES = -0.3∆   2 = 175.0 GeV/ctopM

]2(stat + JES) [GeV/ctopMδ
1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

]2
F

ra
ct

io
n

 o
f 

P
E

s/
[0

.1
0 

G
eV

/c

0

0.05

0.1

0.15

0.2

0.25

0.3

)
top

JES (stat + M∆δ
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

F
ra

ct
io

n
 o

f 
P

E
s/

0.
02

0

0.05

0.1

0.15

0.2

0.25

0.3

)
top

JES (stat + M∆δ
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

F
ra

ct
io

n
 o

f 
P

E
s/

0.
02

0

0.05

0.1

0.15

0.2

0.25

0.3 JES = -0.3∆    2 = 175.0 GeV/ctopM

 Expected

 Measured

FIG. 11: Distributions of the uncertainties on the top
quark mass (upper plot) and the jet energy scale dis-
placement (lower plot) as expected from default PEs per-
formed using as input values M in

top = 175.0 GeV/c2 and

∆JESin = −0.3. The vertical lines indicate the uncertain-
ties obtained in our reported result.

which, isolating the purely statistical contributions
and adding the uncertainties from JES and Mtop to
the respective systematic uncertainties, can also be
written as

Mtop = 174.8 ± 1.7 (stat) +2.0
−1.9 (syst) GeV/c2 , (29)

∆JES = −0.30 ± 0.35 (stat) +0.47
−0.49 (syst) . (30)

This measurement of the top quark mass has been
used in the current world average [5].

XII. CROSS SECTION MEASUREMENT

The procedure used to measure the top quark mass
returns also the average number of signal events ex-
pected, given the selected data samples. These results
can be turned into a measurement of the tt̄ cross sec-
tion, as follows.

A. The likelihood function

From the number of signal events, n1 tag
s and

n≥2 tags
s , as obtained from the mass likelihood fit, we

derive a measurement of the tt̄ production cross sec-
tion considering the efficiency for selecting a tt̄ event
in the two tagging categories.

The cross section measurement is performed by
maximizing a likelihood function which can be divided
into two parts :

L = L1 tag ×L≥2 tags , (31)

where each term can be expressed as :

L1,≥2 tags = Lσtt̄
×Lε , (32)

where

Lσtt̄
= e

−
(σtt̄·ε·L−ns)2

2σ2
ns (33)

contains all the parameters of the fit, i.e. the produc-
tion cross section σtt̄, the integrated luminosity L, the
signal efficiency ε, and the the signal yield ns±σns

, as
given by the mass measurement, while Lε is a Gaus-
sian term constraining the efficiency within its statis-
tical uncertainty.

The efficiencies are evaluated using a sample of
about four million tt̄ events generated with Mtop =
175GeV/c2 and assuming ∆JES = −0.3, i.e. the
value we measured by the mass likelihood fit, and are
summarized along with signal yields and other param-
eters in Table VI.

While studying the performance of the procedure,
using pseudoexperiments produced assuming a given
input cross section, we observe the need to introduce
a small correction. The outcome of the fit needs to be
multiplied by a factor kσ = 0.982 ± 0.008 in order to
obtain an unbiased measurement of the cross section.

From the maximization of the likelihood, we obtain
a central value for the tt̄ production cross section

σtt̄ = 7.2 ± 0.5(stat) ± 0.4(lum) pb , (34)

evaluated assuming Mtop = 175 GeV/c2 and ∆JES =
−0.3, close to the values measured in Sec.XI. The
first uncertainty is the statistical one, while the second
one derives from the 6% uncertainty on the integrated
luminosity. As the signal efficiencies depend strongly
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TABLE VI: Input variables to the cross section evaluation.
For the signal yields, the first uncertainty is the purely
statistical one.

Variable Input value

Signal yield, 1-tag 643± 59 ± 54

Signal yield, ≥ 2-tags 216± 21 ± 14

Efficiency, 1-tag (3.55± 0.01)%

Efficiency, ≥ 2-tags (1.00± 0.01)%

Integrated luminosity 2874± 172pb−1

TABLE VII: Cross section as evaluated assuming different
values for Mtop and ∆JES.

Mtop (GeV/c2) ∆JES σtt̄ (pb)

175.0 -0.3 7.24

175.0 0.0 7.00

172.5 0.0 7.21

170.0 0.0 7.29

on the assumed values for Mtop and ∆JES, also the
measured tt̄ cross section has the same dependence.
For reference we report in TableVII the cross sections
corresponding to other (Mtop, ∆JES) points with a
top quark mass near the current CDF average. In
this case we assume ∆JES = 0 and the systematic
uncertainty on JES is increased from 6.1% to 9.2%,
corresponding to changing the ∆JES by ±1 rather
than by ±0.6 units, that is the sum in quadrature
of the uncertainties on the measured jet energy scale,
Sec. XI.

B. Systematic uncertainties

The majority of the sources of systematic uncer-
tainties on σtt̄ are in common with those discussed for
the measurement of the top quark mass, and we just
need to evaluate the effect both on the signal yields
and on the signal efficiencies in order to derive the ef-
fect on the cross section. There are few other sources
of systematic uncertainty specific to a cross section
measurement which have not been discussed in Sec. X,
because they affect only the signal efficiencies. These
include the uncertainty on the calibration constant,
kσ , on the W → hadrons branching ratio (BR) [24],
on the trigger simulation and on the distribution of the
primary vertex z-coordinate. As for the effect of the
JES uncertainty on the efficiency, we have evaluated
it by changing the ∆JES by ±0.6 units with respect
to the measured value ∆JES = −0.3. Residual effects
due to individual levels of corrections have been ac-
counted for too. The relative uncertainty ∆σtt̄/σtt̄ for
the individual sources are summarized in TableVIII.

TABLE VIII: Systematic uncertainties and their relative
sizes for the cross section measurement. The total un-
certainty is obtained by the sum in quadrature of single
contributions.

Source ∆σtt̄/σtt̄ (%)

Calibration 0.8

Generator 4.2

ISR/FSR 0.6

b-jet Energy Scale 2.8

SF ET Dependence 5.4

PDF 3.4

Multiple Hadron Interactions 2.5

Color Reconnection 0.8

Templates Statistics 0.8

Background Shape 0.3

Background Normalization 8.2

JES 6.1

Residual JES 2.1

Primary Vertex 0.2

BR(W → hadrons) 0.8

Trigger 1.8

Total 13.7

Considering their sum in quadrature, the tt̄ produc-
tion cross section amounts to

σtt̄ = 7.2 ± 0.5(stat) ± 1.0(syst) ± 0.4(lum) pb , (35)

assuming Mtop = 175GeV/c2 and ∆JES = −0.3.

XIII. CONCLUSIONS

Using a very effective neural-network-based kine-
matical selection and a b jet identification technique,
we measure the top quark mass to be

Mtop = 174.8 ± 2.4(stat + JES) +1.2
−1.0(syst) GeV/c2 , (36)

and the tt̄ production cross section to be

σtt̄ = 7.2 ± 0.5(stat) ± 1.0(syst) ± 0.4(lum) pb .(37)

These values represent the most precise measure-
ments to date of Mtop and σtt̄ in the all-hadronic de-
cay channel. The results are consistent with the mea-
surements obtained in other channels by CDF and D0
Collaborations [5, 6] and of σtt̄ with theoretical pre-
dictions evaluated at the measured value of the top
quark mass [3].
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